

Daily Tutorial Sheet-14	Level - 3
-------------------------	-----------

153.(B) Oleum \Rightarrow [H₂SO₄ + SO₃]

Reaction involved

$$[H_2SO_4 + SO_3] + H_2O \longrightarrow H_2SO_4 + H_2SO_4$$

$$\longleftarrow 100g \longrightarrow (100 - w)$$

$$(100 - w)g wg$$

If w = 100g, moles of
$$SO_3 = \frac{100}{80} = 1.25$$
 mole

moles of $\,\text{H}_2\text{O}\,$ required to react with 1.25 moles of $\,\text{SO}_3$ = 1.25 mole mass added = (1.25 \times 18)g = 22.5 g . It means if we would have 100 g of SO_3 then, mass of H_2SO_4 obtained would be 122.5 g thus

maximum percentage yield of on oleum sample should be just less than 122.5%.

154.(A) 0.0833 moles of compound $\rightarrow 1$ mole of hydrogen

1 mole of compound $\rightarrow \frac{1}{0.0833}$ moles of hydrogen \rightarrow 12 moles of H

 $\text{CH}_2\text{O} \to \text{Empirical formula}$.

Molecular formula = $C_6H_{12}O_6$

155.(C)
$$C_n H_{2n} + H_2 \longrightarrow C_n H_{2n+2}$$

% raise =
$$\frac{2}{12n + 2c}$$
100

$$2.38 = 100 \times \frac{1}{7n}$$

n = 6.

156.(A)
$$W_C : W_H = 8 : 1$$

$$n_C: n_H = 8: 12 = 2:3$$

	Mass	Moles	Simplest Ratio
С	$92.7\frac{8}{9} = 82.4$	$\frac{82.4}{12} = 6.86$	15.04 = 30.
Н	$\frac{92.7}{9} = 10.3$	10.3 = 10.3	22.58 = 45.
О	7.3	$\frac{7.3}{16} = 0.456$	1 = 2

Empirical formula = $C_{30}H_{45}O_2$

157.(C)
$$Mn_XO_Y + \frac{Y}{2}C \longrightarrow XMn + \frac{Y}{2}CO_2$$

$$n_{Mn_XO_Y} = \frac{31.6}{55x + 16y} \qquad \qquad n_{CO_2} = \frac{13.2}{44} = 0.3$$

$$n_{CO_2} = \frac{13.2}{44} = 0.3$$

Solutions | Workbook-1 3 Stoichiometry-I

$$\begin{split} &\frac{Y}{2} n_{\text{Mn}_{X}\text{O}_{Y}} = n_{\text{CO}_{2}} \\ &\frac{Y}{2} \frac{(31.6)}{(55x + 16y)} = 0.3 \\ &\frac{Y}{x} = \frac{3}{2} \quad \Rightarrow \quad \text{Mn}_{2}\text{O}_{3} \end{split}$$

 ${\bf 158.(A)}$ In A, uranium contains the same exact ratio required.

Solution | workbook-1 4 Stoichiometry-I